✨ Enterprise Features - Content Moderation
Features here are behind a commercial license in our /enterprise
folder. See Code
Features:
- Content Moderation with LlamaGuard
- Content Moderation with Google Text Moderations
- Content Moderation with LLM Guard
- Tracking Spend for Custom Tags
Content Moderation with LlamaGuard
Currently works with Sagemaker's LlamaGuard endpoint.
How to enable this in your config.yaml:
litellm_settings:
callbacks: ["llamaguard_moderations"]
llamaguard_model_name: "sagemaker/jumpstart-dft-meta-textgeneration-llama-guard-7b"
Make sure you have the relevant keys in your environment, eg.:
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
Customize LlamaGuard prompt
To modify the unsafe categories llama guard evaluates against, just create your own version of this category list
Point your proxy to it
callbacks: ["llamaguard_moderations"]
llamaguard_model_name: "sagemaker/jumpstart-dft-meta-textgeneration-llama-guard-7b"
llamaguard_unsafe_content_categories: /path/to/llamaguard_prompt.txt
Content Moderation with LLM Guard
Set the LLM Guard API Base in your environment
LLM_GUARD_API_BASE = "http://0.0.0.0:8000"
Add llmguard_moderations
as a callback
litellm_settings:
callbacks: ["llmguard_moderations"]
Now you can easily test it
Make a regular /chat/completion call
Check your proxy logs for any statement with
LLM Guard:
Expected results:
LLM Guard: Received response - {"sanitized_prompt": "hello world", "is_valid": true, "scanners": { "Regex": 0.0 }}
Content Moderation with Google Text Moderation
Requires your GOOGLE_APPLICATION_CREDENTIALS to be set in your .env (same as VertexAI).
How to enable this in your config.yaml:
litellm_settings:
callbacks: ["google_text_moderation"]
Set custom confidence thresholds
Google Moderations checks the test against several categories. Source
Set global default confidence threshold
By default this is set to 0.8. But you can override this in your config.yaml.
litellm_settings:
google_moderation_confidence_threshold: 0.4
Set category-specific confidence threshold
Set a category specific confidence threshold in your config.yaml. If none set, the global default will be used.
litellm_settings:
toxic_confidence_threshold: 0.1
Here are the category specific values:
Category | Setting |
---|---|
"toxic" | toxic_confidence_threshold: 0.1 |
"insult" | insult_confidence_threshold: 0.1 |
"profanity" | profanity_confidence_threshold: 0.1 |
"derogatory" | derogatory_confidence_threshold: 0.1 |
"sexual" | sexual_confidence_threshold: 0.1 |
"death_harm_and_tragedy" | death_harm_and_tragedy_threshold: 0.1 |
"violent" | violent_threshold: 0.1 |
"firearms_and_weapons" | firearms_and_weapons_threshold: 0.1 |
"public_safety" | public_safety_threshold: 0.1 |
"health" | health_threshold: 0.1 |
"religion_and_belief" | religion_and_belief_threshold: 0.1 |
"illicit_drugs" | illicit_drugs_threshold: 0.1 |
"war_and_conflict" | war_and_conflict_threshold: 0.1 |
"politics" | politics_threshold: 0.1 |
"finance" | finance_threshold: 0.1 |
"legal" | legal_threshold: 0.1 |
Tracking Spend for Custom Tags
Requirements:
- Virtual Keys & a database should be set up, see virtual keys
Usage - /chat/completions requests with request tags
- OpenAI Python v1.0.0+
- Curl Request
- Langchain
Set extra_body={"metadata": { }}
to metadata
you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"]
}
}
)
print(response)
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {"tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"]}
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"]
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Viewing Spend per tag
/spend/tags
Request Format
curl -X GET "http://0.0.0.0:4000/spend/tags" \
-H "Authorization: Bearer sk-1234"
/spend/tags
Response Format
[
{
"individual_request_tag": "model-anthropic-claude-v2.1",
"log_count": 6,
"total_spend": 0.000672
},
{
"individual_request_tag": "app-ishaan-local",
"log_count": 4,
"total_spend": 0.000448
},
{
"individual_request_tag": "app-ishaan-prod",
"log_count": 2,
"total_spend": 0.000224
}
]